المعين for Dummies
المعين for Dummies
Blog Article
تمت الكتابة بواسطة: دينا الرقطي آخر تحديث: ١٢:٢٥ ، ٥ سبتمبر ٢٠٢١ ذات صلة قانون حساب مساحة المعين
كما تحسب بدلالة طول ضلعه وجيب إحدى زواياه α أو β بالعلاقة: :
يمكن رسم دائرة داخل المعين يمس محيطها أضلاع المعين الأربعة، وتكون:
عندما يكون القطر الأقصر مساويًا لطول أحد ضلعي المعين، فإن اثنين من المثلثات المتشكلة بين الأقطار سيكونا متطابقين.
يمكن أيضاً حساب ارتفاع المعين اعتماداً على طول أحد أضلاعه، وقيمة المساحة، وقيمة إحدى زواياه، وذلك باستخدام المعادلتين الآتيتين:[٣]
مساحة متوازي الاضلاع بكل انواعه مع امثلة توضيحية لحساب المساحة
يمكن أيضاً حساب ارتفاع المعين اعتماداً على قِيَم الأقطار، بالإضافة إلى طول أحد أضلاع المعين، وقيمة المساحة، وذلك باستخدام المعادلتين الآتيتين:[٢]
المعين هو عبارةٌ عن شكلٍ هندسيٍّ مضلع ثنائي الأبعاد، يُستخدم في الكثير من المجالات والتطبيقات في مجال الرياضيات وفي حياتنا العلمية والعملية، وتُعرف مساحة المعيّن على أنها المساحة المحدودة بأضلاع المعين، أي داخل محيط المعين، ويوجد عدة قوانين وطرقٍ رياضيةٍ لحساب مساحة المعين سوف نشرحها بالتفصيل في هذا المقال مع ذكر بعض الأمثلة.
إيد أرابيا هو الدليل التعليمى الأول بالشرق الأوسط والذى يمكن الطلاب وأولياء الأمور والمعلمين من المقارنة لأختيار أفضل المؤسسات التعليمية ارابيا
القُطران في المعين يشكّلان محوري تناظر للمعين، ونقطة التقاطع تشكّل مركز تناظر له.
مساحة المعين هي حجم السطح بداخله. يتم الحصول على مساحة المعينات باستخدام حجم أقطارها more info وجوانبها.
هذه بذرة مقالة عن الهندسة الرياضية بحاجة للتوسيع. فضلًا شارك في تحريرها.
ويمكنك ترتيب الفرق بينهما في جدول على لوحة كبيرة يوضح الاختلافات بينهما كالآتي:
القُطران متعامدان وينصّفان زواياه وهما محوَرَي التماثل للمعين، كما أنّ كل قطرٍ من أقطاره يقسم المعين إلى مثلثَين متطابقَين.
انتقل إلى المحتوى القائمة الرئيسية القائمة الرئيسية
Report this page